TRANSMISSION LINES SOLVED EXAMPLES

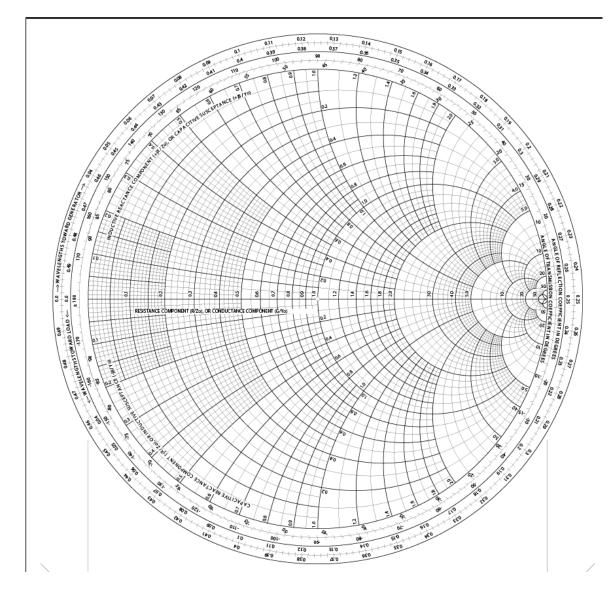


Table of contents

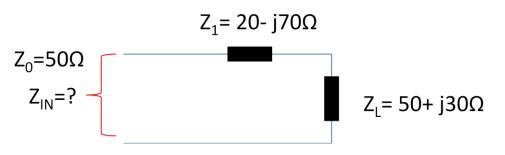
1. Imped	dances in Series 4
1.1 B	By calculation
1.2 L	Jsing Smith Chart 4
2. Imped	dances in Parallel5
2.1 B	3y calculation5
2.2 L	Jsing Smith Chart
3. Lossle	ess transmission line, terminated with an arbitrary impedance
3.1 Exa	imple: 6
3.2 B	By calculation7
3.3 L	Jsing Smith Chart 10
4. Distan	nce to first voltage maximum and minimum11
5. Imped	dance matching11
5.1 S	Shunt-series L-Network, by calculation
5.1.1 E	Example: Match load
5.2 S	Series shunt- L-Network, by calculation15
5.2.1 E	Example: Match load
5.2.2 E	Example: Match load
5.2.3 E	Example: Match load
5.3 S	Shorted parallel stub as tuning element19
5.4 C	Open series stub as tuning element 21
6. Lossy	transmission line terminated with an arbitrary impedance
6.1 Exa	ample:
7. Half-w	vave transmission line impedance transformer
7.1 Exa	1mple

Kuva 1: Impedances in Series	4
Kuva 2:Impedances in Parallel	
Kuva 3:Transmission line	. 10
Kuva 4:Radially scaled parameters, SWR, Return Loss, Reflection Coefficient	. 11
Kuva 5:L-network matching	. 12
Kuva 6: Allowable Load impedance area for shunt-series network in Smith Chart representation	. 14
Kuva 7: Allowable Load impedance area for series -shunt -network in Smith Chart representation	. 16
Kuva 8 Allowable Load impedance area for capacitors only-network in Smith Chart representation	. 17
Kuva 9 Allowable Load impedance area for inductors only-network in Smith Chart representation	. 18
Kuva 10:Half-wavelength 1:4 impedance transformer	. 31
Kuva 11:Half-wavelength impedance transformer, schematic	. 31
Kuva 12:Half-wavelength impedance transformer, lumped model	. 32
Kuva 13:Voltage along t-line	. 35
Kuva 14:Current along t-line	

Kaava 1	7
Kaava 2	13
Kaava 3	
Kaava 4	15
Kaava 5	15
Kaava 6: Length of transmission line in shorted stub matching	20
Kaava 7: Length of shorted stub in shorted stub matching	20
Kaava 8:Propagation constant	22
Kaava 9: Speed of propagation	22
Kaava 10: Characteristic impedance of a lossy transmission line	
Kaava 11: Voltage of a lossy transmission line as function of distance	24
Kaava 12: Current of a lossy transmission line as function of distance	24
Kaava 13:Input impdance of a lossy transmission line	25
Kaava 14:Power supplied by the generator	
Kaava 15: Power transmitted to load	25
Kaava 16:Voltage reflection coefficient at load	26
Kaava 17:Voltage standing wave ratio	26

1. Impedances in Series

Example: Find \mathbf{Z}_{IN}

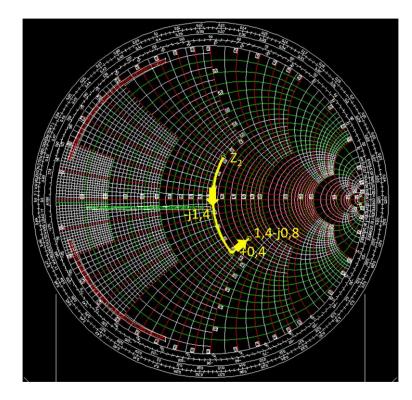


1.1 By calculation

 $Z_{IN} = Z_1 + Z_L = (20-j70)\Omega + (50+j30)\Omega = (70-j40)\Omega = 80.6 < -29,7° Ω.$

1.2 Using Smith Chart

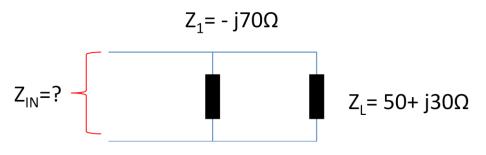
- Normalize ; $Z_L' = Z_L/50$, $Z_1' = Z_1/50$,
- $Z_L'=1+j0,6\Omega$ ->find point on the Smith chart.
 - Z_1 '=0,4- j1,4 Ω (resistance and capacitance in series)
 - on a constant resistance circle, from ZL', rotate counterclockwise 1,4 units to add series C
 - o on a constant reactance arc, move 0,4 units to add a series R
- Convert back to system impedance
- $Z_{IN}=(50 \times 1,4)\Omega + (50 \times -j0,8)\Omega = 70-j40\Omega$



Kuva 1: Impedances in Series

2. Impedances in Parallel

Example: Find Z_{IN}

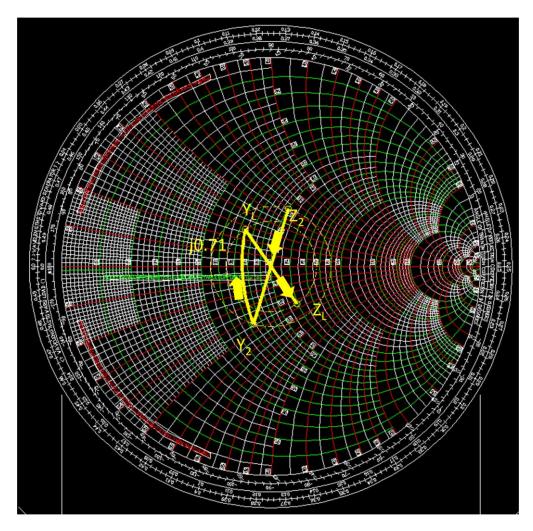


2.1 By calculation

$$Z_{IN} = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_L}} = \frac{1}{\frac{1}{-j70} + \frac{1}{50 + j30}} = \frac{1}{\frac{1}{702 - 90^\circ} + \frac{1}{58,3230,96^\circ}}$$
$$= \frac{1}{\frac{1}{0,0143290^\circ} + \frac{1}{0,01722 - 30,96^\circ}} = \frac{1}{0 + j0,0143 + 0,0147 - j0,0088}$$
$$= \frac{1}{\frac{1}{0,0147 + j0,0055}} = \frac{1}{0,0157220,5^\circ} = 63,72 - 20,5^\circ\Omega = 59,7 - j22,3\Omega$$

2.2 Using Smith Chart

- Normalize ; $Z_L' = Z_L/50$, $Z_1' = Z_1/50$,
- Z_L '=1+ j0,6 Ω ->find point on the Smith chart.
- Find $1/Z_L' = Y_L'$ on the smith chart by "mirroring"
- $Z_1'=-j1,4\Omega > Calculate Y_1 = 1/1,4\angle 90 = 0+j0,71S$
 - \circ On a constant conductance circle, from Y₁ rotate clockwise 0,71 units to arrive at Y_L
- Convert to Z_L =1,19 –j0,45 by "mirroring"
- Convert back to system impedance
- Z_{IN} =(50 x 1,19) Ω + (50 x-j0,45) Ω ≈ **59,7-j22,3** Ω

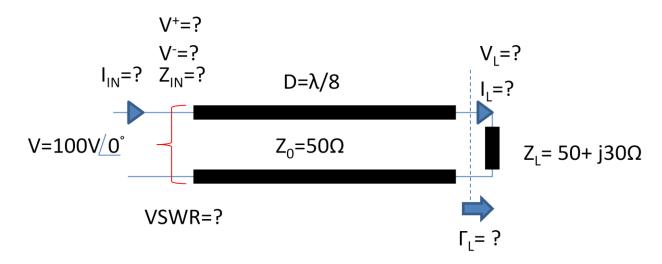


Kuva 2:Impedances in Parallel

3. Lossless transmission line, terminated with an arbitrary impedance

3.1 Example:

Find Z_{IN} , I_{IN} , V_L , I_L , VSWR as a ratio and in dB, return loss in dB, complex voltage/current reflection coefficient and power reflection coefficient at load of the following circuit. Transmission line which length is $\lambda/8$ is assumed to be lossless. System impedance is 50 Ω .



3.2 By calculation

Input impedance for a lossless transmission line terminated with a complex impedance is

$$Z_{IN} = Z_0 \frac{Z_L + jZ_0 tan\beta D}{Z_0 + jZ_L tan\beta D}$$

Kaava 1

 $\lambda = \frac{v_p}{f}$

where

 Z_0 = system impedance; Z_L = load impedance; β = wave number = $2\pi/\lambda$; λ = wavelength; *D* = length of transmission line;

Wavelength is

Where

 v_p = Speed of propagation in the transmission line; *f* = Frequency;

$$Z_{IN} = 50 \frac{50 + j30 + j(50 \tan \frac{\pi}{4})}{50 + j(50 + j30)(\tan \frac{\pi}{4})} = 50 \frac{50 + j80}{50 + j50 - 30} = \frac{2500 + j4000}{20 + j50} = \frac{4716 \angle 58,0^{\circ}}{53,85 \angle 68,2^{\circ}}$$

= 86,2 - j15,5 Ω = 87,6 \angle - 10,2° Ω
and

$$I_{IN} = \frac{V_{IN}}{Z_{IN}} = \frac{100 \angle 0^{\circ}}{87,6 \angle -10,2^{\circ}} = \mathbf{1}, \mathbf{14} \angle \mathbf{10}, \mathbf{2}^{\circ} \mathbf{A}$$

Wave functions for voltage and current as function of distance z (z=0 at generator side of the line) in lossless transmission line are

$$V(z) = V^+ e^{(-j\beta z)} + V^- e^{(j\beta z)}$$

$$I(z) = \frac{V^+}{Z_0} + e^{(-j\beta z)} - \frac{V^-}{Z_0} e^{(j\beta z)}$$

Where

V⁺ = forward propagating voltage wave V⁻ =backward propagating voltage wave

at z=0 voltage and current must be

$$V(0) = V^{+} + V^{-} = 100V \angle 0^{\circ}$$
$$I(0) = I_{IN} = \frac{V^{+}}{Z_{0}} - \frac{V^{-}}{Z_{0}} = 1,14 \angle 10,2^{\circ}A$$

Solve V(0) and I(0) from above by substitution:

$$I(0) = \frac{100\angle 0^{\circ} - V^{-}}{50} - \frac{V^{-}}{50} = 1,14\angle 10,2^{\circ} = >$$

$$V^{-} = \frac{100 \angle 0^{\circ} - 57 \angle 10, 2^{\circ}}{2} = 22,52 \angle -12,95^{\circ}V = 21,95 - j5,05V$$
$$V^{+} = 100 \angle 0^{\circ} - 22,52 \angle -12,95^{\circ} = 78,05 + j5,05 = 78,21 \angle +3,7^{\circ}V$$

And check

$$V^+ + V^- = 78,05 + j5,05 + 21,95 - j5,05 = 100 \angle 0^\circ V; OK$$

Solve V_{L} and I_{L} at distance $D{=}\beta D{=}\pi/4$

$$V(D) = V^{+}e^{(-j\pi/4)} + V^{-}e^{(j\pi/4)}$$
$$I(D) = \frac{V^{+}}{Z_{0}}e^{(-j\pi/4)} - \frac{V^{-}}{Z_{0}}e^{(j\pi/4)}$$

using Euler's formula

$$e^{j\varphi} = \cos\varphi + j\sin\varphi$$

$$V(D) = V^{+}(\cos\left(\frac{-\pi}{4}\right) + j\sin\left(\frac{-\pi}{4}\right)) + V^{-}(\cos\left(\frac{\pi}{4}\right) + j\sin\left(\frac{\pi}{4}\right))$$

$$I(D) = \frac{V^{+}}{Z_{0}}\left(\cos\left(\frac{-\pi}{4}\right) + j\sin\left(\frac{-\pi}{4}\right)\right) - \frac{V^{-}}{Z_{0}}\left(\cos\left(\frac{\pi}{4}\right) + j\sin\left(\frac{\pi}{4}\right)\right)$$

$$V(D) = (78,05 + j5,05)(0,707 - j0,707) + (21,95 - j5,05)(0,707 + j0,707)$$

$$= 77,84 - j39,66 = 87,36 \angle - 27^{\circ}V$$

P.Viljakainen January 2021

$$I(\mathbf{D}) = \frac{78,05+j5,05}{50} \left(\cos\left(\frac{-\pi}{4}\right) + j\sin\left(\frac{-\pi}{4}\right) \right) - \left(\frac{21,95-j5,05}{50} \left(\cos\left(\frac{\pi}{4}\right) + j\sin\left(\frac{\pi}{4}\right) \right) \right)$$

= 1,556 + j0,1)(0,7,7 - j0,707) - ((0,44 - j0,10)(0,707 + j0,707))
= 0,79 - j1,27 = 1,49 \approx - 58, 1° A

Check that impedance at load is correct;

$$Z_L = \frac{V(D)}{I(D)} = \frac{87,36\angle -27^\circ V}{1,49\angle -58,1^\circ A} = 58,63\angle 31,9^\circ \approx 50 + j30\Omega$$

Voltage or current Reflection coefficient is (at load)

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$\Gamma_L = \frac{50 + j30 - 50}{50 + j30 + 50} = \frac{30 \angle 90^{\circ}}{104.4 \angle 16.7} = \mathbf{0}, \mathbf{287} \angle \mathbf{73}, \mathbf{3}^{\circ}$$

and at generator

$$\Gamma_G = \frac{Z_{IN} - Z_0}{Z_{IN} + Z_0}$$

$$\Gamma_{G} = \frac{86,2 - j15,5 - 50}{86,2 - j15,5 + 50} = \frac{39,4 \angle - 23.1^{\circ}}{137,0 \angle - 6,49^{\circ}} = \mathbf{0}, \mathbf{287} \angle - \mathbf{16}, \mathbf{6}^{\circ}$$

Return Loss in dB is

$$R = 20 \log |\Gamma|$$

$$R = 20 \log 0,287 = -10,7 \, dB$$

Power Reflection coefficient is

$$|s|^{2} = \left|\frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}\right|^{2}$$
$$|s|^{2} = \left|\frac{50 + j30 - 50}{50 + j30 + 50}\right|^{2} = 0,297^{2} = 0,082$$

Voltage Standing Wave Ratio is

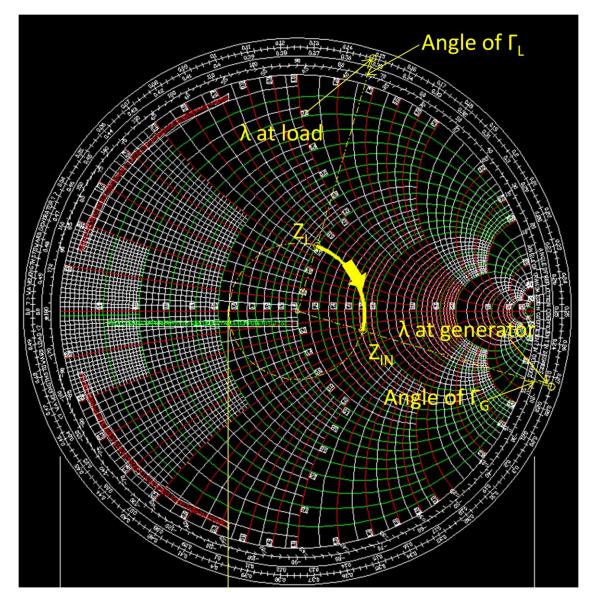
$$VSWR = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}$$
$$\frac{VSWR}{dB} = 20 \log \left(\frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}\right)$$

 $VSWR = \frac{1+0,287}{1-0,287} = 1,82$ $VSWR = 20 \log 1,82 = 5,2 \, dB$

3.3 Using Smith Chart

Many of the above parameters can be read directly from the Smith Chart without calculation and others calculated by using them.

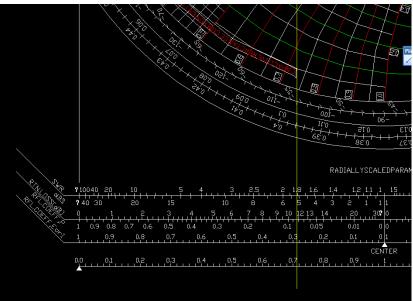
- 1. Normalize ; Z_L '= Z_L /50, Z_L '=1+ j0,6 Ω ->find point on the Smith chart
- 2. Draw a circle to that point with its center in the center of the chart
- 3. From center point extend a line through Z_L' to the scale "wavelengths towards generator"-> read " λ at load# =0,148
- 4. Move on the scale towards generator (clockwise) and add transmission line's λ /8=0,125 units and arrive to " λ at generator"=0,273
- 5. Draw a line from point λ at generator to the center of the Smith Chart, read Z_{IN}'=1,83-j0,3
- 6. Convert Z_{IN} ' back to system impedance level 50Ω



Z_{IN}=50x1,74- 50x j0,3≈87-j15Ω

Kuva 3:Transmission line

- From the circle drawn above, draw from the crossing of the circle and the horizontal axis a straight line down to "radially scaled parameters"



Kuva 4:Radially scaled parameters, SWR, Return Loss, Reflection Coefficient

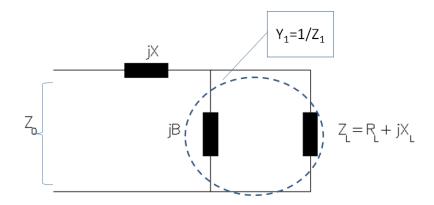
- From the scale "SWR" read SWR \approx 1,82
- From the scale "dBs" read SWR in dB ≈ 5,2dB
- From the scale "RTN LOSS(dB)" read R in dB ≈ -10,7dB
- From the scale "RFL COEFF,P" read power reflection coefficient $|s|^2 \approx 0,082$
- From the scale "RFL COEFF,E or I" read reflection coefficient for voltage or current $|\Gamma_L| = |\Gamma_G| \approx 0,285$
- From the circular scale "Angle of reflection coefficient" read in the intersection of lines drawn in steps 3 and 5 and this scale the corresponding angles of reflection coefficient, angle of $\Gamma_L \approx 73^\circ$ and angle of $\Gamma_G \approx 16.6^\circ$

4. Distance to first voltage maximum and minimum

5. Impedance matching

5.1 Shunt-series L-Network, by calculation

Load impedance $Z_0 = R_L + jX_L$ shall be matched to system impedance Z_0 to maximize power transfer from generator to load. Matching L- network consists of shunt susceptance jB and series reactance jX.



Kuva 5:L-network matching

Calculate first impedance $Z_{1}\text{,}$ Load Z_{L} in parallel with jB

$$Z_{1} = \frac{\frac{1}{jB}(R_{L} + jX_{L})}{\frac{1}{jB} + (R_{L} + jX_{L})} = \frac{(R_{L} + jX_{L})}{1 - BX_{L} + jR_{L}B}$$

Develop Z_1 further to separate its real and imaginary parts:

- Multiply numerator and denominator of Z_1 with (1-BX_L-jR_LB)->

$$Z_{1} = \frac{(R_{L} + jX_{L})(1 - BX_{L} - jR_{L}B)}{(1 - X_{L}B)^{2} + R_{L}^{2}B^{2}} = \frac{R_{L} - R_{t}BX_{L} + R_{t}BX_{L} + j(X_{L} - BX_{L}^{2} - R_{L}^{2}B)}{(1 - X_{L}B)^{2} + R_{L}^{2}B^{2}}$$
$$= \frac{R_{L} + j(X_{L} - BX_{L}^{2} - R_{L}^{2}B)}{1 + X_{L}^{2}B^{2} - 2X_{L}B + R_{L}^{2}B^{2}} = \frac{R_{L} + j(X_{L} - BX_{L}^{2} - R_{L}^{2}B)}{(R_{L}^{2} + X_{L}^{2})B^{2} - 2X_{L}B + 1}$$

Real part of Z_1 has to be equal to the system impedance $Z_0 \rightarrow$ Solve B to fulfill that condition

$$\frac{R_L}{(R_L^2 + X_L^2)B^2 - 2X_LB + 1} = Z_0$$

$$(R_L^2 + X_L^2)B^2 - 2X_LB + 1 = \frac{R_L}{Z_0} \rightarrow$$

$$Z_0(R_L^2 + X_L^2)B^2 - 2Z_0X_LB + (Z_0 - R_L) = 0$$

This is a quadratic equation which roots are

$$B = \frac{2Z_0 X_L \pm \sqrt{(2Z_0 X_L)^2 - 4Z_0 (R_L^2 + X_L^2)(Z_0 - R_L)}}{2Z_0 (R_L^2 + X_L^2)}$$
$$= \frac{Z_0 X_L \pm \sqrt{Z_0^2 X_L^2 - (R_L^2 + X_L^2)(Z_0^2 - Z_0 R_L)}}{Z_0 (R_L^2 + X_L^2)}$$
$$= \frac{Z_0 X_L \pm \sqrt{Z_0^2 X_L^2 - R_L^2 Z_0^2 + R_L^3 Z_0 - Z_0^2 X_L^2 + X_L^2 R_L Z_0}}{Z_0 (R_L^2 + X_L^2)}$$

P.Viljakainen January 2021

$$= \frac{Z_0 X_L \pm \sqrt{Z_0 (X_L^2 Z_0) - Z_0 (R_L^2 Z_0) + Z_0 R_L^3 - Z_0 (X_L^2 Z_0) + Z_0 (X_L^2 R_L)}}{Z_0 (R_L^2 + X_L^2)}$$

$$= \frac{Z_0 X_L \pm \sqrt{Z_0 (X_L^2 Z_0 - R_L^2 Z_0 + R_L^3 - X_L^2 Z_0 + X_L^2 R_L)}}{Z_0 (R_L^2 + X_L^2)}$$

$$= \frac{Z_0 X_L \pm \sqrt{Z_0 (-R_L^2 Z_0 + R_L^3 + X_L^2 R_L)}}{Z_0 (R_L^2 + X_L^2)}$$

$$= \frac{\frac{Z_0 X_L}{Z_0} \pm \sqrt{\left(\frac{1}{Z_0}\right)^2 Z_0 (-R_L^2 Z_0 + R_L^3 + X_L^2 R_L)}}{Z_0}}{\frac{Z_0 (R_L^2 + X_L^2)}{Z_0}}{(R_L^2 + X_L^2)}}$$

$$= \frac{X_L \pm \sqrt{\frac{1}{Z_0} R_L (R_L^2 + X_L^2 - R_L Z_0)}}{(R_L^2 + X_L^2)} \rightarrow \frac{Z_0 (R_L^2 + X_L^2)}{Z_0}}{(R_L^2 + X_L^2)}$$
There is has to compose to the imposet of Z

Series reactance jX has to compensate the imaginary part of Z_1

$$\frac{(X_L - BX_L^2 - R_L^2 B)}{(R_L^2 + X_L^2)B^2 - 2X_L B + 1} = -X$$

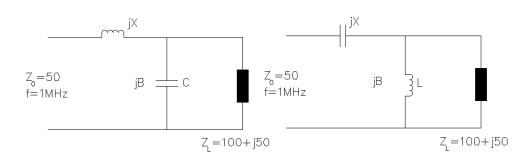
and because

$$\frac{R_L}{(R_L^2 + X_L^2)B^2 - 2X_LB + 1} = \frac{R_L}{\frac{R_L}{Z_0}} = Z_0$$
$$\frac{(X_L - BX_L^2 - R_L^2B)}{\frac{R_L}{Z_0}} = -X$$
$$= (X_L^2 + R_L^2)B = -Z_0X_L + BZ_0(X_L^2 + R_L^2)$$

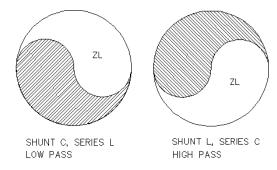
$$-X = \frac{X_{l} - (X_{L}^{2} + R_{L}^{2})B}{\frac{R_{L}}{Z_{0}}} = \frac{-Z_{0}X_{L} + BZ_{0}(X_{L}^{2} + R_{L}^{2})}{R_{L}} \rightarrow$$
$$X = \frac{BZ_{0}(R_{L}^{2} + X_{L}^{2}) - Z_{0}X_{L}}{R_{L}}$$

Kaava 3

5.1.1 Example: Match load



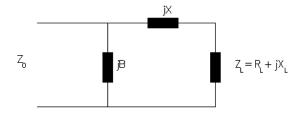
Shunt C, series L	Shunt L, series C
$B = \frac{X_L + \sqrt{\frac{R_L}{Z_0}} \sqrt{(R_L^2 + X_L^2 - R_L Z_0)}}{(R_L^2 + X_L^2)}$	$B = \frac{X_L - \sqrt{\frac{R_L}{Z_0}}\sqrt{\left({R_L}^2 + {X_L}^2 - R_L Z_0\right)}}{\left({R_L}^2 + {X_L}^2\right)}$
$= \frac{50 + \sqrt{\frac{100}{50}} \sqrt{100^2 + 50^2 - 100 * 50}}{100^2 + 50^2}$ = 0,013798S = 72,47Ω (capacitor)	$=\frac{50-\sqrt{\frac{100}{50}}\sqrt{100^2+50^2-100*50}}{100^2+50^2}$ $-0,005798S=-172,47\Omega \ (inductor)$
$Y_L = \frac{1}{100 + j50} = 0,008 - j0,004S$	$Y_L = \frac{1}{100 + j50} = 0,008 - j0,004S$
$Y_1 = 0,008 - j0,004 + j0,013798 = 0,008 + j0,009798S$	$Y_1 = 0,008 - j0,004 - j0,005798$ = 0,008 - j0,009798S
$Z_1 = \frac{1}{Y_1} = \frac{1}{0,008 + j0,009798} = 50,00 - 61,23\Omega$	$Z_1 = \frac{1}{Y_1} = \frac{1}{0,008 - j0,009798} = 50,00 + 61,23\Omega$
$C = \frac{1}{72,47 * 2\pi * 1 * 10^6} F = 2,197 nF$	$L = \frac{172,47}{2\pi * 1 * 10^6} H = 27,4uH$
$X = \frac{BZ_0 (R_L^2 + X_L^2) - Z_0 X_L}{R_L}$	$X = \frac{BZ_0 (R_L^2 + X_L^2) - Z_0 X_L}{R_L}$
$= \frac{0,013798 * 50(100^2 + 50^2) - 50 * 50}{100}$	$=\frac{-0,005798S*50(100^2+50^2)-50*50}{100}$
$= 61,23\Omega \ (inductor)$ $L = \frac{61,23}{2\pi * 1 * 10^6} H = 9,75uH$	$= -61,23\Omega \ (capacitor)$ $C = \frac{1}{61,23 * 2\pi * 1 * 10^6} F = 2,600nF$



Kuva 6: Allowable Load impedance area for shunt-series network in Smith Chart representation

5.2 Series shunt- L-Network, by calculation

Matching L- network consists of a series reactance jX and a shunt susceptance jB.



Calculate first impedance Z_1 , Load Z_L in series with jX

$$Z_{1} = jX + R_{L} + jX_{L} = j(X_{L} + X)$$
$$Y_{1} = \frac{1}{Z_{1}} = \frac{1}{R_{L} + j(X_{L} + X)}$$

Develop Y1 to separate its real and imaginary parts, multiply numerator and denominator by $R_L - j(X_L + X)$

$$Y_{1} = \frac{R_{L} - j(X_{L} + X)}{R_{L}^{2} - (j(X_{L} + X))^{2}} = \frac{R_{L} - j(X_{L} + X)}{R_{L}^{2} + X_{L}^{2} + X^{2} + 2X_{L}X}$$

Real part of admittance Y_1 must be equal to $1/Z_0 \rightarrow$

$$\frac{R_L}{R_L^2 + X_L^2 + X^2 + 2X_L X} = \frac{1}{Z_0} \rightarrow$$

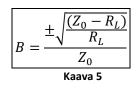
$$X^2 + 2X_L X + R_L^2 + X_L^2 - R_L Z_0 = 0 \rightarrow$$

$$X = \frac{-2X_L \pm \sqrt{(2X_L)^2 - 4(R_L^2 + X_L^2 - R_L Z_0)}}{\frac{2}{X_L^2 - X_L \pm \sqrt{R_L(Z_0 - R_L)}}} \rightarrow$$

$$Kaava 4$$

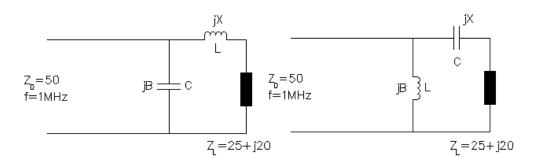
Imaginary part of admittance Y_1 has to compensated by B, and

$$\frac{R_L}{R_L^2 + X_L^2 + X^2 + 2X_L X} = \frac{1}{Z_0} = \frac{R_L}{R_L Z_0} \rightarrow$$
$$\frac{X_L + X}{R_L Z_0} = \frac{\frac{X_L - X_L}{R_L Z_0} \pm \sqrt{R_L (Z_0 - R_L)}}{R_L Z_0} = \frac{\frac{1}{R_L} \pm \sqrt{R_L (Z_0 - R_L)}}{\frac{1}{R_L} R_L Z_0} = -B \rightarrow$$

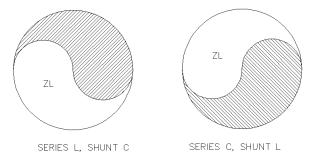


5.2.1 Example: Match load

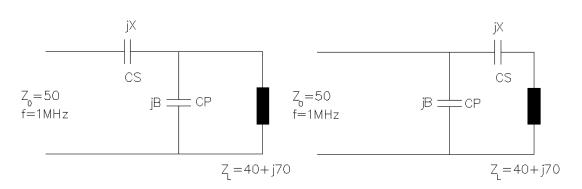
L-network match, series- shunt



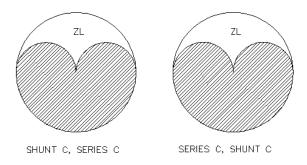
Series L, Shunt C	Series C, Shunt L
$X = -X_L + \sqrt{R_L(Z_0 - R_L)}$	$X = -X_L - \sqrt{R_L(Z_0 - R_L)}$
$= -(20) + \sqrt{25(50 - 25)}$	$= -(20) - \sqrt{25(50 - 25)}$
= 5,00 <i>Ω</i>	$=-45,00\Omega$
$B = \frac{\pm \sqrt{\frac{(Z_0 - R_L)}{R_L}}}{Z_0} = \frac{\pm \sqrt{\frac{(50 - 25)}{25}}}{50} = 0,020S$	$B = \frac{-\sqrt{\frac{(Z_0 - R_L)}{R_L}}}{Z_0} = \frac{-\sqrt{\frac{(50 - 25)}{25}}}{50} = -0,020S$
$\boldsymbol{C} = \frac{0,020}{2\pi * 1 * 10^6} = \boldsymbol{3}, \boldsymbol{18nF}$	$L = \frac{1/_{0,020}}{2\pi * 1 * 10^6} = 7,96uH$
$L = \frac{5,00}{2\pi * 1 * 10^6} = 796nH$	$C = \frac{1}{45,00 * 2\pi * 1 * 10^6} = 3,53nF$



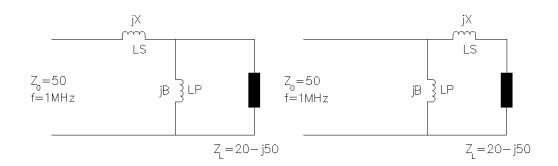
5.2.2 Example: Match load



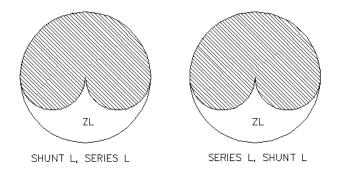
Shunt C, series C	Series C, shunt C
$B = \frac{X_L \pm \sqrt{\frac{R_L}{Z_0}} \sqrt{(R_L^2 + X_L^2 - R_L Z_0)}}{(R_L^2 + X_L^2)}$ $= \frac{70 \pm \sqrt{\frac{40}{50}} \sqrt{(40^2 + 70^2 - 40 * 50)}}{(40^2 + 70^2)}$ $= 0,020S (not applicable, would require L in series)$ $= 0,001538S$	$\begin{aligned} X &= -X_L \pm \sqrt{R_L(Z_0 - R_L)} \\ &= -70 \pm \sqrt{40(50 - 40)} \\ &= -50,00\Omega \\ &= -90,00\Omega \text{ (not applicable, would require L} \\ in parallel) \end{aligned}$
$CP = \frac{0,001531}{2\pi * 1 * 10^6} F = 244,9pF$	$CS = \frac{1}{50,00 * 2\pi * 1 * 10^6} F = 3, 18nF$
$CP = \frac{0,001531}{2\pi * 1 * 10^6} F = 244,9pF$ $X = \frac{BZ_0 (R_L^2 + X_L^2) - Z_0 X_L}{R_L}$ $= \frac{0,001538 * 50(40^2 + 70^2) - 50 * 70}{40}$ $= -75,00\Omega \ (capacitor)$	$B = \frac{\pm \sqrt{\frac{(Z_0 - R_L)}{R_L}}}{Z_0} = \frac{\pm \sqrt{\frac{(50 - 40)}{40}}}{50}$ = 0,010S (capacitor) = -0,010S (inductor, not applicable)
$CS = \frac{1}{75,00 * 2\pi * 1 * 10^6} F = 2,12nF$	$CP = \frac{0,010}{2\pi * 1 * 10^6} F = 1,59nF$



Kuva 8 Allowable Load impedance area for capacitors only-network in Smith Chart representation



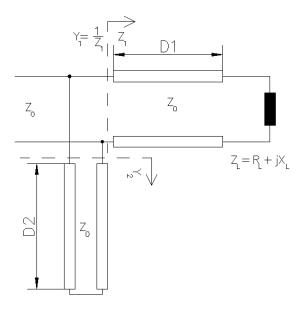
Shunt L, series L	Series L, shunt L
$B = \frac{X_L \pm \sqrt{\frac{R_L}{Z_0}} \sqrt{\left(R_L^2 + X_L^2 - R_L Z_0\right)}}{\left(R_L^2 + X_L^2\right)}$ $= \frac{-50 \pm \sqrt{\frac{20}{50}} \sqrt{(20^2 + (-50)^2 - 20 \times 50)}}{(20^2 + (-50)^2)}$	$X = -X_L \pm \sqrt{R_L(Z_0 - R_L)}$ = -(-50) \pm \sqrt{20(50 - 20)} = 74,49\Omega (not applicable, would require shunt C = 25,51\Omega
= -0,00773S = -0,02674S (not applicable, would require series C)	
$LP = \frac{1}{0,00773 * 2\pi * 1 * 10^6} H = 20, 6uH$	$LS = \frac{25,51}{2\pi * 1 * 10^6} H = 4,06uH$
$X = \frac{BZ_0 (R_L^2 + X_L^2) - Z_0 X_L}{R_L}$ = $\frac{-0,00773 * 50(20^2 + (-50)^2) - 50 * (-50)}{20}$ = $68,96\Omega$	$B = \frac{\pm \sqrt{\frac{(Z_0 - R_L)}{R_L}}}{Z_0} = \frac{\pm \sqrt{\frac{(50 - 20)}{20}}}{50}$ = 0,0245S (capacitor.not applicable) = -0,0245S (inductor)
$LS = \frac{68,96}{2\pi * 1 * 10^6} H = 10,98uH$	$LP = \frac{1}{0,0245 * 2\pi * 1 * 10^6} H = 6,50uH$



Kuva 9 Allowable Load impedance area for inductors only-network in Smith Chart representation

5.3 Shorted parallel stub as tuning element

Load matching can be achieved by paralleling a length of a short circuited transmission line 2 (length D2) placed at a proper distance (transmission line length D1) from the load. Both transmission lines here are assumed to be lossless and having a characteristic impedance Z_0 .



Impedance towards the load as seen in front of transmission line 1 is

$$Z_{1} = Z_{0} \frac{Z_{L} + jZ_{0} tan\beta D1}{Z_{0} + jZ_{L} tan\beta D1} = \frac{Z_{0}[(R_{L} + jX_{L}) + jZ_{0} tan\beta D1]}{Z_{0} + j[(R_{L} + jX_{L}) tan\beta D1]} = \frac{Z_{0}R_{L} + jZ_{0}X_{L} + jZ_{0}^{2} tan\beta D1}{Z_{0} - X_{L} tan\beta D1 + jR_{L} tan\beta D1}$$
$$Y_{1} = \frac{Z_{0} - X_{L} tan\beta D1 + jR_{L} tan\beta D1}{Z_{0}R_{L} + jZ_{0}X_{L} + jZ_{0}^{2} tan\beta D1} = \frac{Z_{0} - X_{L} tan\beta D1 + jR_{L} tan\beta D1}{Z_{0}R_{L} + j(Z_{0}X_{L} + Z_{0}^{2} tan\beta D1)}$$

Develop Y₁ further to separate its real and imaginary parts: multiply numerator and denominator by $(Z_0R_L - j(Z_0X_L + Z_0^2tan\beta D1))$

$$Y_{1} = \frac{(Z_{0} - X_{L}tan\beta D1 + jR_{L}tan\beta D1)(Z_{0}R_{L} - jZ_{0}X_{L} - jZ_{0}^{2}tan\beta D1)}{Z_{0}^{2}R_{L}^{2} + Z_{0}^{2}X_{L}^{2} + 2Z_{0}^{3}X_{L}tan\beta D1 + Z_{0}^{4}tan^{2}\beta D1}$$

$$= \frac{Z_{0}^{2}R_{L} - jZ_{0}^{2}X_{L} - jZ_{0}^{3}tan\beta D1 - Z_{0}R_{L}X_{L}tan\beta D1 + jZ_{0}X_{L}^{2}tan\beta D1 + jZ_{0}^{2}X_{L}tan^{2}\beta D1}{+jZ_{0}R_{L}^{2}tan\beta D1 - Z_{0}R_{L}X_{L}tan\beta D1 + Z_{0}^{2}R_{L}tan^{2}\beta D1}$$

$$= \frac{+jZ_{0}R_{L}^{2}tan\beta D1 - Z_{0}R_{L}X_{L}tan\beta D1 + Z_{0}^{2}R_{L}tan^{2}\beta D1}{Z_{0}^{2}(R_{L}^{2} + X_{L}^{2} + 2Z_{0}X_{L}tan\beta D1 + Z_{0}^{2}tan^{2}\beta D1}$$

$$Y_{1} = \frac{Z_{0}^{2}R_{L}(1 + tan^{2}\beta D1) + jZ_{0}^{2}(-X_{L} - Z_{0}tan\beta D1 + \frac{X_{L}^{2}}{Z_{0}}tan\beta D1 + X_{L}tan^{2}\beta D1 + \frac{R_{L}^{2}}{Z_{0}}tan\beta D1)}{Z_{0}^{2}(R_{L}^{2} + X_{L}^{2} + 2Z_{0}X_{L}tan\beta D1 + Z_{0}^{2}tan^{2}\beta D1)}$$

real part of admittance Y_1 has to be equal to $1/Z_0$, because stub to be calculated later will compensate the imaginary part->

$$\frac{R_L(1 + \tan^2\beta D1)}{R_L^2 + X_L^2 + 2Z_0X_L\tan\beta D1 + Z_0^2\tan^2\beta D1} = \frac{1}{Z_0} \rightarrow$$

$$Z_0^2\tan^2\beta D1 R_L^2 - R_LZ_0\tan^2\beta D1 + 2Z_0X_L\tan\beta D1 + X_L^2 - R_LZ_0 = 0 \rightarrow$$

$$(Z_0^2 - R_LZ_0)\tan^2\beta D1 + 2Z_0X_L\tan\beta D1 + R_L^2 + X_L^2 - R_LZ_0 = 0 \rightarrow$$

$$\beta D1 = atan\left(\frac{-2Z_0X_L \pm \sqrt{(2Z_0X_L)^2 - 4(Z_0^2 - R_LZ_0)(R_L^2 + X_L^2 - R_LZ_0)}}{2(Z_0^2 - R_LZ_0)}\right)$$

Kaava 6: Length of transmission line in shorted stub matching

Only the positive root is meaningful.

Length of transmission line D1 is

$$D1 = \frac{\beta D1}{2\pi} \lambda$$

Impedance Z_2 of the shorted stub of length D2 is, because $Z_{L,\text{stub}}\!=\!\!0$

$$Z_2 = Z_0 \frac{jZ_0 tan\beta D1}{Z_0} = jZ_0 tan\beta D20 \longrightarrow Y_2 = \frac{1}{jZ_0 tan\beta D2},$$

therefore

$$\frac{j(-X_L - Z_0 \tan\beta D1 + \frac{X_L^2}{Z_0} \tan\beta D1 + X_L \tan^2\beta D1 + \frac{R_L^2}{Z_0} \tan\beta D1)}{R_L(1 + \tan^2\beta D1)Z_0} = \frac{1}{-jZ_0 \tan\beta D2} \rightarrow$$

$$\beta D2 = atan\left(\frac{R_L(1 + tan^2\beta D1)}{tan\beta D1\left(-Z_0 + \frac{X_L^2}{Z_0} + X_L tan\beta D1 + \frac{R_L^2}{Z_0}\right) - X_L}\right)$$

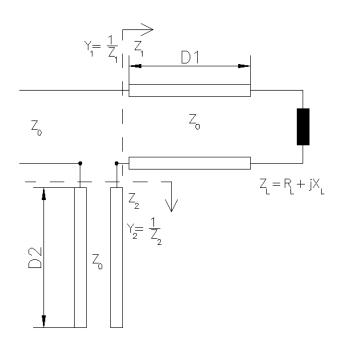
Kaava 7: Length of shorted stub in shorted stub matching

Length of stub D2 is

$$D2 = \frac{\beta D2}{2\pi} \lambda$$

5.4 Open series stub as tuning element

Load matching can be achieved by a length of a open transmission line 2 (length D2) placed in series at a proper distance (transmission line length D1) from the load. Both transmission lines here are assumed to be lossless and having a characteristic impedance Z_0 .



6. Lossy transmission line terminated with an arbitrary impedance

Wave functions for voltage and current as function of distance z (z=0 at generator side of the line) for a lossy transmission line are

$$V(z) = V^{+}e^{(-\gamma z)} + V^{-}e^{(\gamma z)}$$
$$I(z) = \frac{V^{+}}{Z_{0}}e^{(-\gamma z)} - \frac{V^{-}}{Z_{0}}e^{(\gamma z)}$$

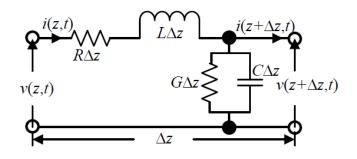
Where

$$\frac{\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}}{\text{Kaava 8:Propagation constant}}$$

 $\gamma = \text{Propagation constant} [\gamma] = \frac{1}{m}$
 $\alpha = \text{Attenuation constant}[\alpha] = \frac{1}{m}; \alpha/\text{dB}=20 \log e^{\alpha} = 20\alpha \log e = 8,686 \alpha$
 $\beta = \text{Phase constant} [\beta] = \frac{rad}{m}$
R, L, G, C = Transmission line distributed constants

The velocity of propagation or the phase velocity is given by

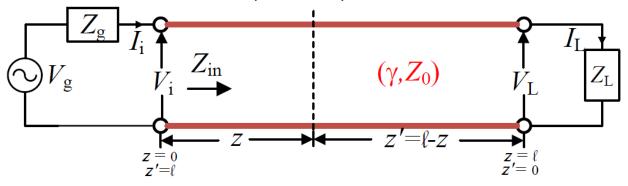
$$u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$



and the characteristic impedance Z_0 is

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

Kaava 10:Characteristic impedance of a lossy transmission line



$$Z_{L} = \frac{V_{L}}{I_{L}} = \frac{V^{+}e^{(-\gamma l)} + V^{-}e^{(\gamma l)}}{\frac{V^{+}}{Z_{0}}e^{(-\gamma l)} - \frac{V^{-}}{Z_{0}}e^{(\gamma l)}}$$

Because

$$V_L = V(l) = V^+ e^{(-\gamma l)} + V^- e^{(\gamma l)} \rightarrow V^+ e^{(-\gamma l)} = V_L - V^- e^{(\gamma l)}$$

$$I_L = I(l) = \frac{V^+}{Z_0} + e^{(-\gamma l)} - \frac{V^-}{Z_0} e^{(\gamma l)}$$

 V^{-} and V^{+} can be solved

$$I_L = \frac{V_L - V^- e^{(\gamma l)}}{Z_0} - \frac{V^- e^{(\gamma l)}}{Z_0}$$
$$\to V^- = \frac{1}{2} (V_L - I_L Z_0) e^{(-\gamma l)} = \frac{I_L}{2} (Z_L - Z_0) e^{(-\gamma l)}$$

$$V_L = V^+ e^{(-\gamma l)} + V^- e^{(\gamma l)} = V^+ e^{(-\gamma l)} + \frac{1}{2} (V_L - I_L Z_0) e^{(-\gamma l)} e^{(-\gamma l)}$$

P.Viljakainen January 2021

$$\to V^{+} = \frac{1}{2} (V_{L} + I_{L} Z_{0}) e^{(\gamma l)} = \frac{I_{L}}{2} (Z_{L} + Z_{0}) e^{(\gamma l)}$$

and V(z) and I(z) now expressed as

$$V(z) = V^{+}e^{(-\gamma z)} + V^{-}e^{(\gamma z)}$$

$$V(z) = \frac{I_{L}}{2} [(Z_{L} + Z_{0})e^{\gamma(l-z)} + (Z_{L} - Z_{0})e^{-\gamma(l-z)}]$$

$$I(z) = \frac{V^{+}}{Z_{0}}e^{(-\gamma z)} - \frac{V^{-}}{Z_{0}}e^{(\gamma z)}$$

$$I(z) = \frac{I_{L}}{2Z_{0}} [(Z_{L} + Z_{0})e^{\gamma(l-z)} - (Z_{L} - Z_{0})e^{-\gamma(l-z)}]$$

and by assigning z' = I-z;

$$V(z) = \frac{I_L}{2} [(Z_L + Z_0)e^{\gamma z'} + (Z_L - Z_0)e^{-\gamma z'}]$$
$$I(z) = \frac{I_L}{2Z_0} [(Z_L + Z_0)e^{\gamma z'} - (Z_L - Z_0)e^{-\gamma z'}]$$

These functions can be written as

$$V(z') = \frac{I_L}{2}(Z_L + Z_0)e^{\gamma z'} + \frac{I_L}{2}(Z_L - Z_0)e^{-\gamma z'} = \frac{I_L Z_L e^{\gamma z'} + I_L Z_0 e^{\gamma z'}}{2} + \frac{I_L Z_L e^{-\gamma z'} - I_L Z_0 e^{-\gamma z'}}{2}$$
$$= \frac{I_L Z_L e^{\gamma z'}}{2} + \frac{I_L Z_L e^{-\gamma z'}}{2} + \frac{I_L Z_0 e^{\gamma z'}}{2} - \frac{I_L Z_0 e^{-\gamma z'}}{2}$$

$$V(z') = I_L Z_L \left(\frac{e^{\gamma z'} + e^{-\gamma z'}}{2} \right) + I_L Z_0 \left(\frac{e^{\gamma z'} - e^{-\gamma z'}}{2} \right)$$

Because

$$\left(\frac{e^{\gamma z'} + e^{-\gamma z'}}{2}\right) = \cosh\left(\gamma z'\right)$$

and

$$\left(\frac{e^{\gamma z'} - e^{-\gamma z'}}{2}\right) = \sinh\left(\gamma z'\right)$$

$$V(z') = I_L[Z_L \cosh(\gamma z') + Z_0 \sinh(\gamma z')]$$

Kaava 11: Voltage of a lossy transmission line as function of distance

$$I(z) = \frac{I_L}{2Z_0} [(Z_L + Z_0)e^{\gamma z'} - (Z_L - Z_0)e^{-\gamma z'}] = \frac{I_L Z_L}{Z_0} \left(\frac{e^{\gamma z'} - e^{-\gamma z'}}{2}\right) + \frac{I_L Z_L}{Z_0} \left(\frac{e^{\gamma z'} + e^{-\gamma z'}}{2}\right)$$
$$I(z') = \frac{I_L}{Z_0} [Z_L \sinh(\gamma z') + Z_0 \sinh(\gamma z')]$$
Kaava 12: Current of a lossy transmission line as function of distance

Load impedance at distance z' from the load is

P.Viljakainen January 2021

$$Z(z') = \frac{V_L}{I_L} = \frac{I_L[Z_L\cosh(\gamma z') + Z_0\sinh(\gamma z')]}{\frac{I_L}{Z_0}[Z_L\sinh(\gamma z') + Z_0\sinh(\gamma z')]} = Z_0 \frac{Z_L\cosh(\gamma z') + Z_0\sinh(\gamma z')}{Z_L\sinh(\gamma z') + Z_0\sinh(\gamma z')}$$

divide numerator and denominator by $\cosh{(\gamma z')}$ ->

$$Z(z') = Z_0 \frac{Z_L \frac{\cosh(\gamma z')}{\cosh(\gamma z')} + Z_0 \frac{\sinh(\gamma z')}{\cosh(\gamma z')}}{Z_L \frac{\sinh(\gamma z')}{\cosh(\gamma z')} + Z_0 \frac{\cosh(\gamma z')}{\cosh(\gamma z')}}$$

and when

$$\frac{\sinh(\gamma z')}{\cosh(\gamma z')} = \tanh(\gamma z')$$

$$Z(z') = Z_0 \frac{Z_L + Z_0 \tanh(\gamma z')}{Z_0 + Z_L \tanh(\gamma z')}$$

at generator, when z'=l

$Z(Z = l) = Z_{IN} =$	$= Z_0 \frac{Z_L + Z_0 \tanh{(\gamma l)}}{Z_0 + Z_L \tanh{(\gamma l)}}$
7(a' - 1) - 7 - 1	$Z_L + Z_0 \tanh{(\gamma l)}$

Kaava 13:Input impdance of a lossy transmission line

Furthermore, as $\gamma = \alpha + j\beta$ and

$$\tanh(x+jy) = \frac{\tanh(x)+j\tan(y)}{1+j\tanh(x)\tan(y)}$$

$$Z_{IN} = Z_0 \frac{Z_L + Z_0 \left(\frac{\tanh(\alpha l) + j \tan(\beta l)}{1 + j \tanh(\alpha l) \tan(\beta l)}\right)}{Z_0 + Z_L \left(\frac{\tanh(\alpha l) + j \tan(\beta l)}{1 + j \tanh(\alpha l) \tan(\beta l)}\right)}$$

Power supplied by the generator is

$$P_{avG} = \frac{1}{2} Re[V_G I_{IN}^*]$$

Kaava 14:Power supplied by the generator

Power delivered to the load is

$$P_{avL} = \frac{1}{2} Re[V_L I_L^*] = \frac{1}{2} \left| \frac{V_L}{I_L} \right|^2 R_L = \frac{1}{2} |I_L|^2 R_L$$

Kaava 15: Power transmitted to load

Where

 $V_{G_{\textrm{r}}}I_{\textrm{IN}},\,V_{\textrm{L}}\,\textrm{and}\,\,I_{\textrm{L}}\,\textrm{are the peak values of voltage and current.}$

Voltage reflection coefficient

$$\begin{cases} \Gamma(z) = \frac{V^{-}e^{\gamma z}}{V^{+}e^{-\gamma z}} = \frac{V^{-}}{V^{+}}e^{2\gamma z} \\ V(z) = V^{+}e^{(-\gamma z)} + V^{-}e^{(\gamma z)} \end{cases}$$

$$V(z) = V^+ e^{(-\gamma z)} [1 + \Gamma(z)]$$
$$I(z) = \frac{V^+}{Z_0} e^{(-\gamma z)} [1 + \Gamma(z)]$$
$$Z(z) = \frac{V(z)}{I(z)} = Z_0 \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

At load (z=l)

$$\Gamma(l) = \Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma_L|e^{j\theta_{\gamma}}$$

Kaava 16:Voltage reflection coefficient at load
$$\Gamma(z) = \frac{V^-}{V^+}e^{2\gamma z} \rightarrow \frac{V^-}{V^+} = \Gamma(l)e^{-2\gamma l} = \Gamma_L e^{-2\gamma l}$$

At distance z

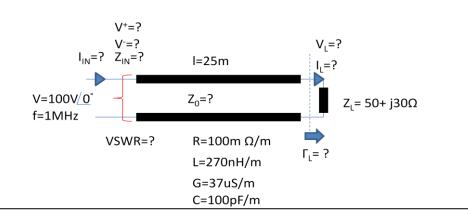
$$\Gamma(z) = \Gamma_L e^{-2\gamma l} e^{2\gamma z} = \Gamma_L e^{2\gamma(z-l)}$$

Voltage standing wave ratio is defined as

VSWR =	$ V_{max} = s$	$1 + \Gamma $
V 3 VV A -	$ V_{min} = 3$	$-\frac{1}{1- \Gamma }$

Kaava 17:Voltage	standing	wave ratio
------------------	----------	------------

6.1 Example:



Calculate:

- a) Transmission line propagation constant γ
- b) Velocity of propagation in the transmission line
- c) Input impedance $Z_{\mbox{\scriptsize IN}}$
- d) Input current I_{IN}
- e) Characteristic impedance of transmission line Z_0
- f) Voltage at load V_L
- g) Load current $I_{\rm L}$
- h) Transmission line voltage at 10m from the load
- i) Power delivered by the generator P_{avG}
- j) Power delivered to the load P_{avL}
- k) Voltage reflection coefficient at load Γ_L
- I) Voltage standing wave ratio VSWR

$$\begin{split} R &= 100 x 10^{-3} \Omega/m \\ L &= 270 x 10^{-9} H/m; j 2 \pi 1 x 10^{6} x 270 x 10^{-9} = j1,696 \, \Omega/m \\ G &= 37 x 10^{-6} \, S/m \\ C &= 100 x 10^{-12} F/m; \, j 2 \pi 1 x 10^{6} x 100 x 10^{-12} = j0,00063 \, S/m \end{split}$$

Calculate γ , α and β from the distributed constants

$$\begin{split} \mathbf{\gamma} &= \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \\ &= \sqrt{(100x10^{-3} + j1,696)(37x10^{-6} + j0,00063)} = \sqrt{-0,00106 + j0,000126} \\ &= \sqrt{0,001072 \angle 173,26^{\circ}} \\ &= \sqrt{0,001107\ e^{j3,02387}} = \left(0,001107\ e^{j3,02387}\right)^{\frac{1}{2}} = 0,0332\ e^{j1,5119} = 0,033 \angle 86,67^{\circ} \\ &= \mathbf{0},\mathbf{00192} + j\mathbf{0},\mathbf{0331} \\ \text{(other root 's real part is negative, meaningless here)} \end{split}$$

 $\alpha = 0,00192 \ \frac{1}{m}$; $\beta = 0,033 \frac{rad}{m}$

Velocity of propagation is

$$u_p = \frac{\omega}{\beta} \approx \frac{1}{\sqrt{LC}} = \frac{2\pi 1 * 10^6}{0.033} = 190.5 * \frac{10^6 m}{s} \approx 0.635 \ c \ (63.5\% \ speed \ of \ light)$$

Calculate Z₀ (Select root with positive real part)

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{(100x10^{-3} + j1,696)}{(37x10^{-6} + j0,00063)}} = \sqrt{2692,1 - j0,6227}$$

= $\sqrt{2692,1 \angle -0.013252^\circ} = \sqrt{2692,1e^{-j0,000231}} = 51,88 e^{-j0,0001156} = 51,89 \angle -0.00662^\circ$
= 51,88 - j0,0060 Ω

Calculate Z_{IN}

$$\boldsymbol{Z_{IN}} = Z_0 \frac{Z_L + Z_0 \left(\frac{\tanh(\alpha l) + j \tan(\beta l)}{1 + j \tanh(\alpha l) \tan(\beta l)}\right)}{Z_0 + Z_L \left(\frac{\tanh(\alpha l) + j \tan(\beta l)}{1 + j \tanh(\alpha l) \tan(\beta l)}\right)}$$

$$= (51,8-j0,0060) \frac{50+j30+(51,8-j0,0060)\left(\frac{tanh(0,00192x25)+jtan(0,033x25)}{1+jtanh(0,00192x25)tan(0,033x25)}\right)}{51,8-j0,0060+(50+j30)\left(\frac{tanh(0,00192x25)+jtan(0,033x25)}{1+jtanh(0,00192x25)tan(0,033x25)}\right)}$$

$$= (51,8-j0,0060) \frac{50+j30+(51,8-j0,0060)(0,104+j1,080)}{51,8-j0,0060+(50+j30)(0,104+j1,080)}$$

$$= (51,8-j0,0060)\frac{55,39+j85,94}{24,6+j57,11} = \mathbf{84}, \mathbf{0} - \mathbf{j14}, \mathbf{1\Omega} = \mathbf{85}, \mathbf{17} \angle -\mathbf{9}, \mathbf{52} \ \mathbf{\Omega}$$

Calculate I_{IN}

$$I_{IN} = \frac{V_{IN}}{Z_{IN}} = \frac{100 \angle 0^{\circ} V}{85,17 \angle -9,52^{\circ} \Omega} = \mathbf{1}, \mathbf{17} \angle \mathbf{9}, \mathbf{52}^{\circ} A$$

Solve V+ and V-

$$V(z = 0) = V_{IN} = V^{+} + V^{-} = 100V \angle 0^{\circ}$$
$$I(z = 0) = I_{IN} = \frac{V^{+}}{Z_{0}} - \frac{V^{-}}{Z_{0}} = 1,17 \angle 9,52^{\circ}A$$

By substitution:

$$I_{IN} = \frac{100 \angle 0^{\circ} - V^{-}}{51,89 \angle -0,00662^{\circ}} - \frac{V^{-}}{51,89 \angle -0,00662^{\circ}} = 1,17 \angle 9,52^{\circ}A =>$$

$$V^{-} = \frac{100 \angle 0^{\circ} - 60,71 \angle 9,53^{\circ}}{2} = 20,68 \angle -14,06^{\circ}V = 20,06 - j5,03V$$
$$V^{+} = 100 \angle 0^{\circ} - 20,68 \angle -14,06^{\circ} = 79,94 + j5,02 = 80,09 \angle +3,60^{\circ}V$$

Voltage at load (z=l)

$$V(z = l) = V_L = V^+ e^{(-\gamma l)} + V^- e^{(\gamma l)}$$

 $\begin{aligned} V_L &= V^+ e^{-(\alpha l + j\beta l)} + V^- e^{\alpha l + j\beta l} = V^+ e^{-\alpha l} e^{-j\beta l} + V^- e^{\alpha l} e^{j\beta l} \\ &= V^+ e^{-\alpha l} (\cos\beta l - i\sin\beta l) + V^- e^{\alpha l} (\cos\beta l + i\sin\beta l) \end{aligned}$

$$= (79,94 + j5,02)e^{-0,00192x25}(cos(0,033x25) - i sin(0,033x25)) + (20,06 - j5,03)e^{0,00192x25}(cos(0,033x25) + i sin(0,033x25)) = (79,94 + j5,02)x0,953x(0,679 - j0,735) + (20,06 - j5,03)x1,049x(0,679 + j0,735) = 73,41 - j40,86V = 84,01 \angle -0,51^{\circ}V$$

Current at load (z=l)

$$I(z = l) = I_L = \frac{V^+}{Z_0} e^{(-\gamma l)} - \frac{V^-}{Z_0} e^{(\gamma l)}$$

P.Viljakainen January 2021

$$I_L = \frac{V^+ e^{-\alpha l} (\cos \beta l - i \sin \beta l)}{Z_0} - \frac{V^- e^{\alpha l} (\cos \beta l + i \sin \beta l)}{Z_0}$$

= $\frac{(79,94 + j5,02) * 0,953 * (0,679 - j0,735)}{51,88 - j0,0060} - \frac{(20,06 - j5,03) * 1,049 * (0,679 + j0,735)}{51,88 - j0,0060}$
= $\frac{37,08 - j64,63}{51,88 - j0,0060} = 0,715 - j1,246 A = 1,44 \angle -1,05^{\circ} A$

Voltage at an arbitrary point (z') along the transmission line can be obtained (e.g. 10m from load)

 $V(z') = I_L[Z_L \cosh(\gamma z') + Z_0 \sinh(\gamma z')]$

Because

$$cosh(a + jb) = cosh(a)cos(b) + jsinh(a)sin(b)$$

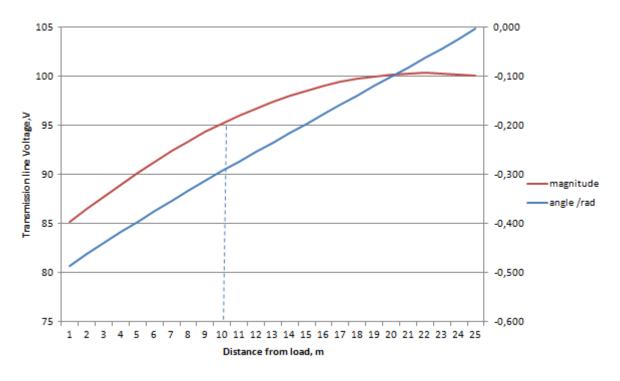
and

$$sinh(a + jb) = sinh(a)cos(b) + jcosh(a)sin(b)$$

$$V(z') = I_L [Z_L [\cosh(\alpha z') \cos(\beta z') + isinh(\alpha z') \sin(\beta z')] + Z_0 [\sinh(\alpha z') \cos(\beta z') + icosh(\alpha z') \sin(\beta z')]] =>$$

V(z' = 10) =

 $\begin{array}{l} (0,715 - j1,246) \big[(50 + j30) [\cosh(0,0192) \cos(0,33) + isinh(0,019) \sin(0,33)] \\ + (51,88 - j0,006) [\sinh(0,0192) \cos(0,33) + icosh(0,0192) \sin(0,33)] \big] \\ = (0,715 - j1,246) \big[(50 + j30) \big((0,946 + j0,006) + (51,88 - j0,006) (0,018 + j0,324) \big) \big] \\ = (0,715 - j1,246) (48,03 + j45,48) = -91,03 - j27,35 = \textbf{95}, \textbf{05} \angle -\textbf{16}, \textbf{7}^\circ \textbf{V} \end{array}$



$$P_{avG} = \frac{1}{2} Re[V_G I_{IN}^*]$$

$$P_{avG} = \frac{1}{2} Re[V_G I_{IN}^*] = \frac{1}{2} Re[100 \angle 0^\circ (1,17 \angle 9,52^\circ)^*] = \frac{1}{2} Re[100 \angle 0^\circ (1,17 \angle -9,52^\circ]W = 57,7W$$

$$P_{avL} = \frac{1}{2} I_L^2 R_L$$

$$P_{avL} = \frac{1}{2} I_L^2 R_L = \frac{1}{2} 1,44^2 * 50 = 51,8W$$

Voltage reflection coefficient at load is

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$\boldsymbol{\Gamma}_{L} = \frac{(50+j30) - (51,88-j0,0060)}{(50+j30) + (51,88-j0,0060)} = 0,063+j0,276 = \mathbf{0},\mathbf{283}\angle\mathbf{77},\mathbf{17}^{\circ}$$

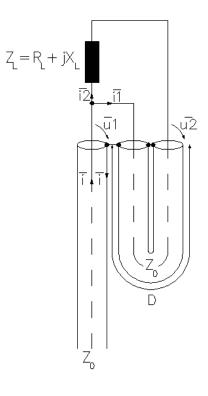
Voltage standing wave ratio is

$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

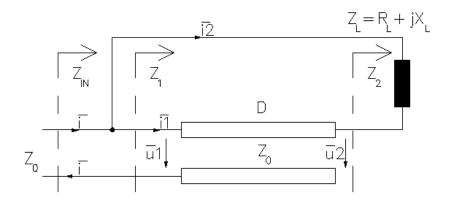
$$S = \frac{1+0,283}{1-0,283} = 1,79$$

7. Half-wave transmission line impedance transformer

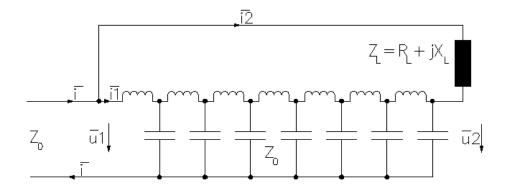
A half- wavelength transmission line can be used as an impedance transformer. In this example the transmission line is assumed to be lossless.



Kuva 10:Half-wavelength 1:4 impedance transformer



Kuva 11:Half-wavelength impedance transformer, schematic

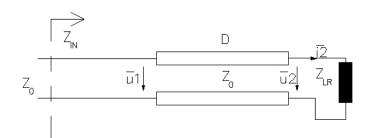


Kuva 12:Half-wavelength impedance transformer, lumped model

Load Z_L in this case is connected across the transmission line as shown in the schematic diagram. The resulting load impedance needed in the calculation of the transmission line input impedance Z_{IN} is therefore unknown, as it depends on the actual voltage u_2 and current i_2 at the end of the transmission line, which both depend on the resulting load impedance.

To be able to solve voltage and current along the transmission line an iterative method must be used.

1. Calculate Z_{IN} with an seed value (guess) of "reduced" load impedance Z_{LR}



$$Z_{IN} = Z_0 \frac{Z_{LR} + jZ_0 tan\beta D}{Z_0 + jZ_{LR} tan\beta D}$$

2. Calculate I_{IN}

$$I_{IN} = \frac{V_{IN}}{Z_{IN}}$$

3. Solve and calculate V^+ and V^-

$$V(0) = V^{+} + V^{-}$$
$$I_{IN} = \frac{V^{+}}{Z_{0}} - \frac{V^{-}}{Z_{0}}$$

4. Calculate V and I at distance D (at the end of the transmission line)

$$V(D) = V^{+}(\cos(-\beta D) + j\sin(-\beta D)) + V^{-}(\cos(\beta D) + j\sin(\beta D))$$

$$I(D) = \frac{V^{+}}{Z_{0}}(\cos(-\beta D) + j\sin(-\beta D)) - \frac{V^{-}}{Z_{0}}(\cos(\beta D) + j\sin(\beta D))$$

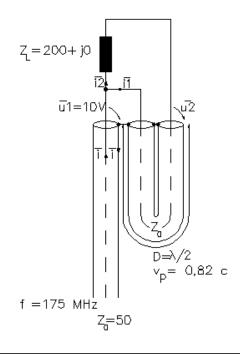
5. Calculate the current i_2 through actual load Z_L across the transmission line which would be caused by u_1 and V(D)

$$i_2 = \frac{u_1 - V(D)}{Z_L}$$

- 6. Calculate $-i_2$
- 7. Compare i2 with I(D), both magnitude and phase shall match when "reduced" load impedance Z_{LR} is correct, if no match, change the initial reduced load impedance estimate and re-calculate.
- 8. When -i2 and I(D) match, voltage and current can be calculated at any point of the transmission line.

7.1 Example

Define input impedance Z_{in} , voltage u_2 , currents i, i_1 and i_2 and voltage and current along the length of the $\lambda/2$ transmission line.



 $\begin{array}{l} \beta {=} 2\pi /\lambda {=} 2\pi f /v_{p} {=} 2\pi 175^{*} 10^{6} /(0.82^{*} 3^{*} 108) {=} 4.4697 \ 1/m \\ \beta D {=} (2\pi /\lambda)^{*} (\ \lambda /2) {=} \pi \end{array}$

Calculate Z_{IN} with a seed value (guess) of "reduced" load impedance $Z_{LR} = 70 + j0$ (arbitrary)

$$Z_{IN} = Z_0 \frac{Z_{LR} + jZ_0 tan\beta D}{Z_0 + jZ_{LR} tan\beta D} = 50 \frac{70 + j0 + j50 tan\pi}{50 + j(70 + j0) tan\pi} = 70 + j0$$
$$I_{IN} = \frac{V_{IN}}{Z_{IN}} = \frac{10\angle 0}{70\angle 0} = 0,14\angle 0A$$

$$V^{-} = \frac{u_{1} - (Z_{0} * I_{IN})}{2} = \frac{10 \angle 0 - (50 * 0.14 \angle 0A)}{2} = 1.429 \angle 0 V$$

$$V^{+} = u_1 - V^{-} = 10 \angle 0 - 1,429 \angle 0 V = 8,571 \angle 0 V$$

$$V(D) = V^{+} (cos(-\beta D) + jsin(-\beta D)) + V^{-} (cos(\beta D) + jsin(\beta D))$$

= 8,571 \alpha 0 V (cos(-\pi) + jsin(-\pi)) + 1,429 \alpha 0 V (cos(\pi) + jsin(\pi)) = 10 \alpha 180 V

$$\begin{split} I(D) &= \frac{V^+}{Z_0} (\cos(-\beta D) + j\sin(-\beta D)) - \frac{V^-}{Z_0} (\cos(\beta D) + j\sin(\beta D)) \\ &= \frac{8,571 \,\angle 0 \,V}{50} \left(\cos(-\beta D) + j\sin(-\beta D) \right) - \frac{1,429 \,\angle 0 \,V}{50} \left(\cos(\pi) + j\sin(\pi) \right) = 0,143 \,\angle 180 \,A \\ i_2 &= \frac{u_1 - V(D)}{Z_L} = \frac{10 \,\angle 0 - 10 \,\angle 180}{200 + j0} = 0,100 \,\angle 0 \\ &-i_2 &= -0,100 \,\angle 0 = 0,100 \,\angle 180 \\ I(D) &= 0,143 \,\angle 180 \,A \neq -i_2 = 0,100 \,\angle 180 \rightarrow \end{split}$$

Make a new estimate for Z_{LR} = 100 +j0; do the calculation above again;

$$Z_{IN} = Z_0 \frac{Z_{LR} + jZ_0 tan\beta D}{Z_0 + jZ_{LR} tan\beta D} = 50 \frac{100 + j0 + j50 tan\pi}{50 + j(100 + j0)tan\pi} = 100 + j0$$
$$I_{IN} = i_1 = \frac{V_{IN}}{Z_{IN}} = \frac{10\angle 0}{100\angle 0} = 0, 1\angle 0A$$
$$V^- = \frac{u_1 - (Z_0 * I_{IN})}{2} = \frac{10\angle 0 - (50 * 0, 1\angle 0A)}{2} = 2,5\angle 0V$$
$$V^+ = u_1 - V^- = 10\angle 0 - 2,5\angle 0V = 7,5\angle 0V$$
$$V(D) = u_2 = V^+ (cos(-\beta D) + isin(-\beta D)) + V^- (cos(\beta D) + isin(\beta D))$$

$$V(D) = \mathbf{u}_{2} - V \left(cos(-\beta D) + jsin(-\beta D) \right) + V \left(cos(\beta D) + jsin(\beta D) \right)$$

= 7,5 \approx 0 V $\left(cos(-\pi) + jsin(-\pi) \right) + 2,5 \approx 0 V (cos(\pi) + jsin(\pi)) = \mathbf{10} \approx \mathbf{180} V$
$$I(D) = \frac{V^{+}}{Z_{0}} \left(cos(-\beta D) + jsin(-\beta D) \right) - \frac{V^{-}}{Z_{0}} \left(cos(\beta D) + jsin(\beta D) \right)$$

P.Viljakainen January 2021

$$= \frac{7.5 \angle 0 V}{50} \left(\cos(-\beta D) + j\sin(-\beta D) \right) - \frac{2.5 \angle 0 V}{50} \left(\cos(\pi) + j\sin(\pi) \right) = 0.1 \angle 180 A$$
$$i_2 = \frac{u_1 - V(D)}{Z_L} = \frac{10 \angle 0 - 10 \angle 180}{200 + j0} = 0, 1 \angle 0 A$$
$$-i_2 = -0.100 \angle 0 = 0.1 \angle 180$$

 $I(D) = 0,1 \angle 180 A = -i_2$, so Z_{LR} is correct.

 $i = I_1 + i_2 = 0,1 \angle 0A + 0,1 \angle 0 = 0,2 \angle 0A$

$$Z_{IN} = \frac{u_1}{i} = \frac{10 \angle 0 V}{0.2 \angle 0 A} = 50\Omega$$

so Zin/ZL=1/4.

V(D) and I(D) can be calculated by varying D in the above formulas resulting in following distribution:

